skip to main content


Search for: All records

Creators/Authors contains: "Dobson, Andrew P"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Diet composition is among the most important yet least understood dimensions of animal ecology. Inspired by the study of species abundance distributions (SADs), we tested for generalities in the structure of vertebrate diets by characterising them as dietary abundance distributions (DADs). We compiled data on 1167 population‐level diets, representing >500 species from six vertebrate classes, spanning all continents and oceans. DADs near‐universally (92.5%) followed a hollow‐curve shape, with scant support for other plausible rank‐abundance‐distribution shapes. This strong generality is inherently related to, yet incompletely explained by, the SADs of available food taxa. By quantifying dietary generalisation as the half‐saturation point of the cumulative distribution of dietary abundance (sp50, minimum number of foods required to account for 50% of diet), we found that vertebrate populations are surprisingly specialised: in most populations, fewer than three foods accounted for at least half the diet. Variation insp50was strongly associated with consumer type, with carnivores being more specialised than herbivores or omnivores. Other methodological (sampling method and effort, taxonomic resolution), biological (body mass, frugivory) and biogeographic (latitude) factors influencedsp50to varying degrees. Future challenges include identifying the mechanisms underpinning the hollow‐curve DAD, its generality beyond vertebrates, and the biological determinants of dietary generalisation.

     
    more » « less
  2. Abstract

    Interactions between hosts and pathogens are dynamic at both ecological and evolutionary levels. In the resultant ‘eco‐evolutionary dynamics’ ecological and evolutionary processes affect each other. For example, the house finchHaemorhous mexicanusand its recently emerged pathogen, the bacteriumMycoplasma gallisepticum, form a system in which evidence suggests that changes in bacterial virulence through time enhance levels of host immunity in ways that drive the evolution of virulence in an arms race.

    We use data from two associated citizen science projects in order to determine whether this arms race has had any detectable effect at the population level in the north‐eastern United States.

    We used data from two citizen science projects, based on observations of birds at bird feeders, which provide information on the long‐term changes in sizes of aggregations of house finches (host population density), and the probabilities that these house finches have observable disease (disease prevalence).

    The initial emergence ofM. gallisepticumcaused a rapid halving of house finch densities; this was then followed by house finch populations remaining stable or slowly declining. Disease prevalence also decreased sharply after the initial emergence and has remained low, although with fluctuations through time. Surprisingly, while initially higher local disease prevalence was found at sites with higher local densities of finches, this relationship has reversed over time.

    The ability of a vertebrate host species, with a generation time of at least 1 year, to maintain stable populations in the face of evolved higher virulence of a bacterium, with generation times measurable in minutes, suggests that genetic changes in the host are insufficient to explain the observed population‐level patterns. We suggest that acquired immunity plays an important role in the observed interaction between house finches andM. gallisepticum.

     
    more » « less
  3. Abstract

    The importance of large reserves has been long maintained in the scientific literature, often leading to dismissal of the conservation potential of small reserves. However, over half the global protected‐area inventory is composed of protected areas that are <100 ha, and the median size of added protected area is decreasing. Studies of the conservation value of small reserves and fragments of natural area are relatively uncommon in the literature. We reviewed SCOPUS and WOK for studies on small reserve and fragment contributions to biodiversity conservation and ecosystem services, and fifty‐eight taxon‐specific studies were included in the review. Small reserves harbored substantial portions (upward of 50%) of regional species diversity for many taxa (birds, plants, amphibians, and small mammals) and even some endemic, specialist bird species. Unfortunately, small reserves and fragments almost always harbored more generalist and exotic species than large reserves. Community composition depended on habitat quality, surrounding land use (agricultural vs. urban), and reserve and fragment size, which presents opportunities for management and improvement. Small reserves also provided ecosystem services, such as pollination and biological pest control, and cultural services, such as recreation and improved human health. Limitations associated with small reserves, such as extinction debt and support of area‐sensitive species, necessitate a complement of larger reserves. However, we argue that small reserves can make viable and significant contributions to conservation goals directly as habitat and indirectly by increasing landscape connectivity and quality to the benefit of large reserves. To effectively conserve biodiversity for future generations in landscapes fragmented by human development, small reserves and fragments must be included in conservation planning.

     
    more » « less